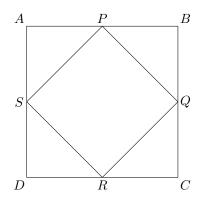
1-1. Each value of Pascal's Triangle is determined by summing the values of the two numbers above it. The first few rows are shown below. Find the sum of the first 8 rows. (For this problem's purposes, the row on the top is considered to be the first row.)

 $\begin{array}{ccc} 1 \\ 1 & 1 \\ 1 & 2 & 1 \end{array}$

1-2. Let T be the smallest prime factor of TNYWR. ABCD and PQRS are squares such that P lies on \overline{AB} , Q lies on \overline{BC} , R lies on \overline{CD} , S lies on \overline{AD} , AP = T, and CD = 7. Find the area of PQRS.



1-3. Let T = TNYWR. Find the units digit of $T^1 + T^2 + \cdots + T^{T-1} + T^T$.

1-4. Let T = TNYWR. Integers x and y are such that $\frac{1}{x} + \frac{1}{y} = \frac{1}{T}$. Find the smallest possible value of x.

2-1. Suppose $a + \frac{1}{b + \frac{1}{b + \cdots}} = \sqrt{10}$. Find b - a if a and b are positive integers.

2-2. Let T = TNYWR. Two lines on the coordinate plane of slope T and $\frac{1}{T}$ intersect at (T,T). Find the area of the triangle enclosed by the two lines and the x-axis.

2-3. Let T = TNYWR. How many different ways are there to obtain a sum of $\frac{2T}{3}$ by rolling $\frac{T}{3}$ distinct regular dice?

2-4. Let T = TNYWR. How many distinct ways are there to color the sides of a *T*-sided polygon with 3 colors if no two adjacent sides can have the same color? (A coloring that can be obtained by rotating or reflecting another coloring is not distinct.)