

Power of a Point

By: Kenan Hasanaliyev

A quadrilateral is said to be cyclic if its 4 vertices all lie on a common circle.

There are three possibilities as displayed in the figures below.

- 1. The two lines are chords of the circle and intersect inside the circle (figure on the left). In this case, we have $AE \cdot CE = BE \cdot DE$.
- 2. One of the lines is tangent to the circle while the other is a secant (middle figure). In this case, we have $AB^2 = BC \cdot BD$.
- 3. Both lines are secants of the circle and intersect outside of it (figure on the right). In this case, we have $CB \cdot CA = CD \cdot CE$.

 $AE \cdot CE = BE \cdot DE.$

In unit square ABCD, the inscribed circle ω intersects \overline{CD} at M, and \overline{AM} intersects ω at a point P different from M. What is AP?

► ABCD is cyclic if and only if $AB \times CD + BC \times DA = AC \times BD$

In triangle ABC, AB = 13, BC = 14, and CA = 15. Distinct points D, E, and F lie on segments \overline{BC} , \overline{CA} , and \overline{DE} , respectively, such that $\overline{AD} \perp \overline{BC}$, $\overline{DE} \perp \overline{AC}$, and $\overline{AF} \perp \overline{BF}$. The length of segment \overline{DF} can be written as $\frac{m}{n}$, where m and n are relatively prime positive integers. What is m + n?

Let AXYZB be a convex pentagon inscribed in a semicircle of diameter AB. Denote by P, Q, R, S the feet of the perpendiculars from Y onto lines AX, BX, AZ, BZ, respectively. Prove that the acute angle formed by lines PQ and RS is half the size of $\angle XOZ$, where O is the midpoint of segment AB.

